Package: skm 0.1.5.4

skm: Selective k-Means

Algorithms for solving selective k-means problem, which is defined as finding k rows in an m x n matrix such that the sum of each column minimal is minimized. In the scenario when m == n and each cell value in matrix is a valid distance metric, this is equivalent to a k-means problem. The selective k-means extends the k-means problem in the sense that it is possible to have m != n, often the case m < n which implies the search is limited within a small subset of rows. Also, the selective k-means extends the k-means problem in the sense that the instance in row set can be instance not seen in the column set, e.g., select 2 from 3 internet service provider (row) for 5 houses (column) such that minimize the overall cost (cell value) - overall cost is the sum of the column minimal of the selected 2 service provider.

Authors:Guang Yang

skm_0.1.5.4.tar.gz
skm_0.1.5.4.zip(r-4.5)skm_0.1.5.4.zip(r-4.4)skm_0.1.5.4.zip(r-4.3)
skm_0.1.5.4.tgz(r-4.4-x86_64)skm_0.1.5.4.tgz(r-4.4-arm64)skm_0.1.5.4.tgz(r-4.3-x86_64)skm_0.1.5.4.tgz(r-4.3-arm64)
skm_0.1.5.4.tar.gz(r-4.5-noble)skm_0.1.5.4.tar.gz(r-4.4-noble)
skm_0.1.5.4.tgz(r-4.4-emscripten)skm_0.1.5.4.tgz(r-4.3-emscripten)
skm.pdf |skm.html
skm/json (API)

# Install 'skm' in R:
install.packages('skm', repos = c('https://gyang274.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/gyang274/skm/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

cpp

4.30 score 40 scripts 163 downloads 21 exports 6 dependencies

Last updated 6 years agofrom:4423416695. Checks:OK: 2 NOTE: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 18 2024
R-4.5-win-x86_64OKOct 18 2024
R-4.5-linux-x86_64NOTEOct 18 2024
R-4.4-win-x86_64NOTEOct 18 2024
R-4.4-mac-x86_64NOTEOct 18 2024
R-4.4-mac-aarch64NOTEOct 18 2024
R-4.3-win-x86_64NOTEOct 18 2024
R-4.3-mac-x86_64NOTEOct 18 2024
R-4.3-mac-aarch64NOTEOct 18 2024

Exports:col_max_idxcol_max_valcol_min_idxcol_min_valcol_rgn_valdist_wlatlngdist_wlatlng_km_cppdist_wlatlng_mi_cppdistRpl_wlatlng_cppdistSgl_wlatlng_cppskm_gdp_cppskm_minmax_cppskm_mlp_cppskm_mlsskm_mls_cppskm_rgi_cppskm_rgs_cppskm_sgl_cppskmRpl_mlp_cppskmSolutionstratified_sampling

Dependencies:data.tablemagrittrplyrRcppRcppArmadilloRcppParallel

skm: selective k-means.

Rendered fromskm-vignettes.Rmdusingknitr::rmarkdownon Oct 18 2024.

Last update: 2017-01-23
Started: 2017-01-23

Readme and manuals

Help Manual

Help pageTopics
col_max_idxcol_max_idx
col_max_valcol_max_val
col_min_idxcol_min_idx
col_min_valcol_min_val
col_rgn_valcol_rgn_val
dist_wlatlngdist_wlatlng
dist_wlatlng_cppdistRpl_wlatlng_cpp distSgl_wlatlng_cpp dist_wlatlng_cpp dist_wlatlng_km_cpp dist_wlatlng_mi_cpp
skm_gdp_cppskm_gdp_cpp
skm_minmax_cppskm_minmax_cpp
skm_mlp_cppskm_mlp_cpp
skm_mlsskm_mls
skm_mls_cppskm_mls_cpp
skm_rgi_cppskm_rgi_cpp
skm_rgs_cppskm_rgs_cpp
skm_sgl_cppskm_sgl_cpp
skmRpl_mlp_cppskmRpl_mlp_cpp
skmSolutionRcpp_skmSolution Rcpp_skmSolution-class skmSolution
source_zip_listsource_zip_list
stratified_samplingstratified_sampling
zip2012zip2012